Exercise Sheet 11

101) Each element of \(\mathbb{Q}(\sqrt{2}, \sqrt{3})\) can be uniquely represented in the form \(a + b\sqrt{2} + c \sqrt{3} + d\sqrt{6}\) where \(a,b,c,d \in \mathbb{Q}\). Therefore it can be identified with a quadruple \((a,b,c,d) \in \mathbb{Q}^4\). Determine the quadruple corresponding to \((a + b\sqrt{2} + c \sqrt{3} + d\sqrt{6})(a' + b' \sqrt{2} + c' \sqrt{3} + d' \sqrt{6})\).

We mark and sort the summands according to their square root factor:

\[\begin{gather*} \color{green}{aa'} + \color{gold}{ab'\sqrt{2}} + \color{blue}{ac'\sqrt{3}} + \color{pink}{ad'\sqrt{6}} + \color{gold}{b\sqrt{2}a'} + \\ \color{green}{b\sqrt{2}b'\sqrt{2}} + \color{pink}{b\sqrt{2}c'\sqrt{3}} + \color{blue}{b\sqrt{2}d'\sqrt{6}} + \color{blue}{c\sqrt{3}a'} + \color{pink}{c\sqrt{3}b'\sqrt{2}} + \\ \color{green}{c \sqrt{3} c'\sqrt{3}} + \color{gold}{c\sqrt{3}d'\sqrt{6}} + \color{pink}{d\sqrt{6}a'} + \color{blue}{d\sqrt{6} b'\sqrt{2}} + \color{gold}{d\sqrt{6} c' \sqrt{3}} + \\ \color{green}{d\sqrt{6} d' \sqrt{6}} \end{gather*}\]

Thus the quadrupel is the following:

\[\begin{gather*} (\color{green}{aa'} + \color{green}{b\sqrt{2}b'\sqrt{2}} + \color{green}{c \sqrt{3} c'\sqrt{3}} + \color{green}{d\sqrt{6} d' \sqrt{6}},\\ \color{gold}{ab'\sqrt{2}} + \color{gold}{b\sqrt{2}a'} + \color{gold}{c\sqrt{3}d'\sqrt{6}} + \color{gold}{d\sqrt{6} c'}, \\ \color{blue}{ac'\sqrt{3}} + \color{blue}{b\sqrt{2}d'\sqrt{6}} + \color{blue}{d\sqrt{6} b'\sqrt{2}} + \color{blue}{c\sqrt{3}a'}, \\ \color{pink}{ad'\sqrt{6}} + \color{pink}{b\sqrt{2}c'\sqrt{3}} + \color{pink}{c\sqrt{3}b'\sqrt{2}} + \color{pink}{d\sqrt{6}a'}) \end{gather*}\]

102) Show that the set \(\{a+b\sqrt{2}|a,b \in \mathbb{Q}\}\) with the usual addition and multiplication is a field.

Let \(S = \{a+b\sqrt{2}|a,b \in \mathbb{Q}\}\),

104) Let \(K\) be a field with \(char(K) = p\). Prove that \((a+b)^p = a^p + b^p\) for all \(a,b \in K\).

Hint: Use the binomial theorem and consider the equation \(\binom{p}{k} = p \cdot \frac{(p-1)!}{k!(p-k)!}\) for \(0 < k < p\). Show that \(\binom{p}{k} \in \mathbb{N}\) implies that the fraction on the right-hand side must be an integer, too, since the factors in the denominator do not divide \(p\).

We apply the binomial theorem:

\[\begin{gather*} (a+b)^p = \sum_{k=0}^p \binom{p}{k} a^{p-k} b^k \end{gather*}\]

we split the sum in order to be able to apply the next step of the hint:

\[\begin{gather*} \binom{p}{0} a^pb^0 + \sum_{k=1}^{p-1} p\cdot \frac{(p-1)!}{k!(p-k)!} a^{p-k}b^k + \binom{p}{p}a^0 b^p = \\ = a^p + \sum_{k=1}^{p-1} p \cdot \frac{(p-1)!}{k!(p-k)!} \cdot a^{p-k} \cdot b^k + b^p \end{gather*}\]

Now, we know \(\binom{p}{k} = p \cdot \frac{(p-1)!}{k!(p-k)!} \in \mathbb{N}\) and we know \(k!(p-k)!\) does not divide \(p\) as \(k \leq p-1 < p\) and thus each \(k (k-1) \cdots 1\) does not divide \(p\), analogously this holds for \((p-k)!\)’s factors. Since \(p\) is prime, no number smaller than \(p\) divides \(p\), therefore \(\frac{(p-1)!}{k!(p-k)!} \in \mathbb{N}\) as \(p \in \mathbb{N}\) and \(\binom{p}{k} \in \mathbb{N}\). Thus \(p \cdot \frac{(p-1)!}{k!(p-k)!}\) can be written as \(p \cdot x\) where \(x \in \mathbb{N}\) and thus \(x \in K\) as well.

This means \(px = (x + x + \dots + x) = x(1+ \dots + 1) = 0\) by definition of \(char(K) = p\).

105) Consider the field \(\mathbb{Z}_2[x] / m(x)\) where \(m(x) = x^3 + x^4 + x^3 + x +1\). Hence the residue classes module \(m(x)\) are

\[\begin{gather*} \bar{b(x)} = \bar{b_7 x^7 + b_6 x^6 + \dots + b_1x + b_0} \end{gather*}\]

and can be identified with a byte \(b_7b_6 \dots b_1b_0\). Compute the sum of the two bytes \(10010101\) and \(11001100\) in the field.

\[\begin{align} &10010101\\ +&11001100\\ \hline &01011001 \end{align}\]

no carry by addition over polynoms and xor since \(\mathbb{Z}_2\). Thus \(x^6 + x^4 + x^3 +1\) mod \(m(x)\).

106) Show that the repetition code of order \(r\) (i.e. each bit of the original word is sent \(r\) times) is a linear code. Determine a generator matrix and a check matrix of this code.

We show \(C\) is a linear code by defining a generating matrix of dimensions \(k \times r \cdot k\) for it:

\[\begin{gather*} \begin{bmatrix} 1^r & 0^r & 0^r & \dots \\ 0^r & 1^r & 0^r & \dots \\ 0^r & 0^r & 1^r & \dots \\ \vdots & \vdots & \vdots & \ddots\\ \end{bmatrix} \end{gather*}\]

and the check matrix of dimensions \((r-1)k \times (r\cdot k)\) by:

\[\begin{gather*} \begin{bmatrix} m & m_0 & m_0 & \dots \\ m_0 & m & m_0 & \dots \\ m_0 & m_0 & m & \dots \\ \vdots & \vdots & \vdots & \ddots\\ \end{bmatrix} \end{gather*}\]

where each \(m,m_0\) represents a block of size \((r-1)\cdot r\) and \(m_0\) is defined by a block of only zeros while \(m\) is defined by:

\[\begin{gather*} \begin{matrix} 1 & 1 & 1 & \dots \\ -1 & 0 & 0 & \dots \\ 0 & -1 & 0 & \dots \\ 0 & 0 & -1 & \dots \\ \vdots & \vdots & \vdots & \ddots\\ \end{matrix} \end{gather*}\]

each of these blocks represents a system of equations which check all \(r\) bits are the same, i.e. bit \(1\) is the same as bit \(2\) etc.

107) Four symbols have to be encoded with elements of \(\mathbb{Z}_2^5\) such that the code forms a \((5,k)\) linear code (\(k\) to be determined) with which \(1\)-bit errors can be detected and corrected. Determine a generating matrix and a check matrix of this code.

We want \(d=3\) in order to be able to correct \(1\) error.

\[\begin{gather*} G = \pmatrix{ 0 & 1 & 1 & 0 & 1\\ 1 & 0 & 0 & 1 & 1 } \end{gather*}\]

\[\begin{gather*} H = \pmatrix{ 1 & 1 & 0 & 1 & 0\\ 1 & 0 & 1 & 1 & 0\\ -1 & 0 & -1 & 0 & 1\\ -1 & -1 & 0 & 0 & 1\\ 0 & 0 & 0 & -1 & -1 } \end{gather*}\]

from the system of equations:

\[\begin{gather*} b_1 + b_2 = b_3 + b_4\\ b_1 = b_4\\ b_2 = b_3\\ b_1 + b_2 = b_5\\ b_3 + b_4 = b_5 \end{gather*}\]